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SYNOPSIS 

Non-Markovian diffusion transport in polymers was studied. Applying the results of various 
researchers, a stretched exponential relaxation function was obtained and a linear visco- 
elastic constitutive equation formulated. Frequency dependent material functions, obtained 
from this constitutive equation were studied and the results successfully compared with 
experimental data for polyethylene oxide solutions. Sorption kinetics in a polymeric film 
were also studied. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

Classical or Fickian sorption of a penetrant in a 
polymer membrane is described by the standard dif- 
fusion equation, taking into account appropriate 
boundary and initial conditions.' 

Crank and Park2 presented an extensive exper- 
imental characterization of Fickian sorption. The 
experimental quantities of interest are the amount 
of penetrant ( M t )  associated with the polymer at  
time t and the equilibrium amount M,. A plot of 
M t / M ,  versus t'l2 reveals a characteristic finger- 
print of Fickian sorption kinetics. Such a curve is 
initially linear and the desorption curve is located 
below the corresponding absorption curve. Such 
features are observed for temperatures well above 
the glass-transition temperature ( T,) of the polymer. 
Below the Tg one observes non-Fickian kinetics, 
characterized by s-shaped plots, a large discontinuity 
in penetrant concentration at  the advancing pene- 
trant front as well as other features not described 
by classical diffusion. 

Here, we draw attention to some results of a sto- 
chastic transport mode13s4 that describes the dy- 
namics of a randomly traveling packet of walkers 
on a simple periodic lattice. It is not a pure micro- 
scopic model, but it provides a link between phe- 
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nomenological models and models based on a mo- 
lecular description. Equations based on this ap- 
proach have great modelling potential and can be 
used in various fields. The sorption kinetics of or- 
ganic molecules in polymeric membranes can be de- 
scribed by this approach. Only the basic ideas are 
used in this contribution. Other studies in the lit- 
erature provide more details of the t h e ~ r y . ~ - ~  

EXPERIMENTAL 

Non-Markovian Transport Processes 

We are interested in describing the sorption kinetics 
of a penetrant (gas or liquid) in a polymeric mem- 
brane, which can be thought of as an amorphous 
solid, that includes islands of crystalline material. 
From the point of view of the penetrant molecules, 
the polymer is a disordered system with a dispersion 
in the separation distances between the nearest 
neighbor localized sites available for the jumping 
molecules. There is also a dispersion in the potential 
barriers between these sites. Both of these variables 
strongly affect the jumping time; that is, the time 
between a molecule's arrival on successive sites. One 
assumes that the distribution of these jumping times, 
J / (  t )  , should have a long tail.4 This has an important 
effect on the transport properties of our system as 
we shall illustrate. The pausing time distribution 
function, J / (  t )  ( = a e P a t ) ,  is representative of the 
walks for which an average time ( t )  exists between 
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steps. Following an induction period, a lattice walk 
of this class reduces to classical diffusion. A second 
group of walks is characterized by a distribution 
function $( t )  with a long tail, so that ( t )  becomes 
infinite. A pausing time distribution function with 
an inverse power tail, is representative for this class 
and is written as: $( t )  x Pt-(l+B)/r( 1 - p ) .  In this 
case, the diffusion is slower and highly dispersive. 
It is known for example that this choice of $( t )  leads 
to the Williams et al. relaxation function for the 
frequency dependent dielectric constant for many 
polymeric systems.6 

Classical theory is generally described via a Mar- 
kovian transport master equation 

= -aG(1, t )  f a C‘p(1, l’)G(l’ ,  t )  (1) 
dG(1, t )  

dt 1’ 

where G(  1 ,  t )  is the probability that an investigated 
system is in state 1 at time t and ap ( 1 ,  1 ‘ )  is the 
probability of a transition from 1’ to 1 per unit time, 
that is, a represents the reciprocal average time be- 
tween steps. The transition probabilities are nor- 
malized 

It is possible to interpret the states ( 1 )  as the lattice 
points on a periodic space lattice. The system is then 
a random walker on this lattice. The jumping time 
distribution function $( t )  is an important quantity. 
It is the probability density function for the time t 
between the arrival of a walker at a given lattice 
point and the start of the next step to another site. 
We assume all lattice points to be equivalent. That 
is to say: $( t )  is a universal function for the whole 
lattice andp(l‘, 1 )  = p ( l ’ -  1 ) .  The function G(1, t )  
completely specifies the propagation of the traveling 
packet. That is: no absorbing boundaries are con- 
sidered. Also, the function G(  I ,  t )  is related to the 
Laplace transform of $( t )  , as follows4: 

L J 

where d is the random walk generating f ~ n c t i o n . ~  
Computational examples on a periodic space lat- 

tice are given by Montroll and S ~ h e r . ~  Equation ( 1 ) 
should not be used when dealing with nonequilib- 

rium processes. For the case when all lattice points 
are considered equivalent, eq. ( 1 ) can be generalized 
as6: 

where 4( t )  is the relaxation function related to $( t )  
by the following equation 

For u = iw, $*( u )  is related to the frequency depen- 
dent diffusion constant and $ ( t )  is the response 
function for a linear response theory of random walk 
transport.6 

Note that an exponential form of $( t )  ( =ae-OLt) 
leads to: 

$ ( t )  = 2a6(t) .  ( 7 )  

Equation ( 5 )  yields then the Markovian master 
equation: 

1 

I ’  J 

For very small cells and considering steps to the 
nearest neighboring points only, one can in the con- 
tinuum limit write the Markovian master equation 
as follows: 

13G(x, t )  d2G(x, t )  + dG(x, t )  
= a  

at ax ax ’ 

a,  b = constant. (9 )  

This is a parabolic equation that, for a homogeneous 
Brownian motion, represents a differential form of 
the Einstein-Kolmogorov equation. 

If the walkers are introduced as a narrow distri- 
bution at  t = 0 at the plane x = 0 [i.e., G ( x ,  0)  
= 6 (x) J , the solution of eq. (9)  is: 

G(x,  t )  = - [;; ( x + b t 7 .  (10) 
2 G t e x p  - t -  4at 



POLYMER NON-MARKOVIAN DIFFUSION TRANSPORT 755 

G ( r , t  

Oe20* 
0.15 

1 

0.10 

0.05 

0 

- 
................... - - ...- ...__. 

....-* .- ....-.- .. 
.* .- _ * . . -  I I I 1 I 1 I 

0 0.2 0.4 0.6 0.8 
T 

Figure 1 
= 4at. (-1 x = 0.1 and ( - - - )  x = 0.7. 

Normalized solution of the Einstein-Kolmogorov equation. K = b /2a  = -1; T 

The peak is at x, = -bt and travels at a speed dx,/ Note that for b 2 / a  - 0 one obtains the classical 
d t  = -b. result: 

Typical predictions of equation ( 10) are shown 
in Figures 1 and 2. All moments of G ( x ,  t )  given by 
(10) exist and are given as: 

( x ) ,  = x"G(x, t )  dt  (1 la )  

where H,, ( 2) are Hermite polynomials. 
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Figure 2 
= 4at. (-) T = 0.1 and ( - - - )  T = 0.7. 

Normalized solution of the Einstein-Kolmogorov equation. K = b /2a  = -1; T 
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with dispersion 

and 

Another special case is obtained when: 

4 ( t )  = (13) 

which corresponds to $( t )  given by the difference 
of two exponentials.6 

One can then differentiate eq. ( 5 )  with respect 
to time to generate, via the continuum limit, the 
following, telegraph, differential equation 5 :  

d2G(x, t )  a2G(X, t )  
at2 =a[, ax 

or 

d2G dG - d 2 G  - d G  - + X - = A ? + B -  (14b) 
at2 at ax ax 

where A, B, and X are constants. 
A characteristic of the telegraph equation is that 

a pulse propagates initially as a wave. At later times, 
it behaves as a diffusion packet. Such a mechanism 
may be useful for studying the behavior of advancing 
boundaries between a swollen gel and the glassy core 
in glassy polymers. 

The importance of the telegraph equation, when 
dealing with random walks has been recognized by 
Kenkre et a1.6 

It is possible to take advantage of eq. (6 )  and to 
combine it with the Laplace transform of eq. (5). 
Thus one can avoid the necessity to have an explicit 
expression for the relaxation function 4( t )  and ef- 
fectively model the process via the distribution 
function $( t )  . Using this procedure, one can study 
the consequences of the choice of $( t ) ,  especially 
the distribution functions with an inverse power tail. 
In particular, one can investigate the asymptotic 
behavior for long times. Next, we shall try to relate 
the form of $( t )  to the diffusion in polymers and to 
the rheological properties in polymers. The asymp- 
totic behavior of the Laplace transform of the prob- 
ability G(x, t )  is discussed in Appendix A. 

In Appendix A, the ratio of the random walk gen- 
erating functions c ( x, $* ) / 6 ( 0, $* ) is calculated 
for a free space walk (no restrictions). Before we 
analyze and use expression (A.17) further, it is use- 
ful to recall some results of Kenkre et al. for the 
case of an absorbing plane boundary. We locate the 
absorbing plane at  1 = L.  One needs then to change 
the free space propagator G to the propagator P given 
by6 

P(1, t )  = G(  1 - l o ,  t )  

G(1, t - T ) F ( L  - l o ,  7) d7. (15) 

Here, we assume that initially, the walkers are in- 
jected at lo and F (  L - lo, 7) is the first passage-time 
distribution function for the transition lo + L.  P (  1 ,  
t )  is the probability for a walker starting at  lo at t 
= 0, to be found at  1 at time t .  Because 

-l 

C G(1 - l o ,  t )  = 1 (16) 

it is possible to calculate via eq. (15), the fraction 
p( t )  of walkers surviving (not leaving the sample) 
until time t :  

1 

p ( t )  C P(1, t )  = 1 - F ( L  - lo ,  T )  d~ (17) 
1 

that is, 

Combining eq. ( 4 )  and ( 15),  bearing the periodicity 
of the lattice in mind, one computes: 

Next we assume that we are studying desorption 
kinetics via the following simple experiment. At  time 
t = 0, a narrow packet of diffusant is injected into 
a polymeric membrane of thickness h. Both lateral 
sides of the membrane are "washed" by an external 
medium that collects the penetrant molecules arriv- 
ing at  the boundary planes. That is to say, we are 
dealing with absorbing boundaries, where penetrant 
molecules disappear. By monitoring the amount of 
penetrant, Q(  t )  , present at  time t in the membrane, 
we can write: 
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LDPE 25OC 
o o-xylene, i= 45 min 
0 heptone, T= 2 2 m i n  

Assuming that the model of propagating packets 
discussed earlier can be applied to this case, we have: 

which, combined with eq. ( 19) ,  yields: 

Using the asymptotic form (A.22) , one can write: 

where limt+,Q( t )  = 0. 

$( t )  which has an inverse power tail, that is, 
Thus for the jumping time distribution function 

one can write the following asymptotic form for 
Q( t ) :  

for t  + 00.  

Even though no data are available for such an 
idealized experiment, there is evidence supporting 
the fractional exponential behavior of Q (  t )  . A stan- 
dard gravimetric desorption experiment, described 
by Saleem et a1.,7 has been performed, using a low 
density polyethylene (LDPE) film at  298 K. The 
degree of crystallinity was estimated at 50%. The 
amount of penetrant was measured with a Cahn 2000 
electrorecording balance, and the desorption kinetics 
were studied for various organic penetrants. 

Analyzing these experiments, one notices a sim- 
ilar character in all the desorption curves. Imme- 
diately after the onset of desorption, the amount of 
penetrant decreases. Then there is a region of slower 
decrease, followed finally by a tail region. Figure 3 
illustrates normalized desorption curves for several 
hydrocarbons in LDPE at  25°C. The onset of the 
tail region defines the transit time 7.  Q( t )  has been 
normalized to Q( t )  and the time is measured in rel- 
ative units o f t .  The log-log plot of Figure 4 shows 
the similarity of the desorption curves more clearly. 
One observes that for t > 7, Q( t )  N t-m, which is 
the type of qualitative behavior predicted by eq. 
(24 ) .  It is difficult to find a reasonable explanation 
for such a behavior without a detailed knowledge of 

b 0 octane, f= 3 3 m i n  

o A  

O A  

io-6,- 0.5 1 .O 

t /T  
Figure 3 
bons in LDPE at 25°C. 

Normalized desorption curves for hydrocar- 

the structural properties of the polymer film. One 
can only speculate that crystallinity and molecular 
weight distribution are some of the reasons for this 
unusual transport mechanism. 

Mechanical Relaxation 

The diffusion of large penetrant molecules through 
a glassy polymer may have another interesting effect. 
During the permeation through a polymeric mem- 
brane, the diffusing molecules can generate various 
local conformational abnormalities ( a  field of local 
strains) into the system of polymer chains. When a 
penetrant molecule vacates the site of such a local 
disturbance, it will cause a disturbance at some other 
site of the network. After some time, the neighbor- 
hood of the disturbed segment will relax, as the sys- 
tem returns to equilibrium. According to this picture, 
the migration of penetrant molecules may cause a 
mechanical relaxation in the sample. The fraction 
of segments surviving the “attack” of diffusing mol- 
ecules can be estimated from the continuous time 
random walk model. If a typical unperturbed seg- 
ment is at the origin of a periodic space lattice, we 
need to know the flux of walkers at the origin. Let 
p (  r ,  t )  be the probability density, at time t , that a 
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LOPE 25OC 
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Figure 4 Normalized desorption curves (log-log plot) of the systems shown in Figure 3. 

walker originally at r reaches the origin for the first 
time. The probability that the walker has not 
reached the origin during the time interval ( 0 ,  t )  is 
then: 1 - ji p ( r ,  t ' )  dt'. The probability that none 
of the n walkers has reached the origin is the survival 
probability P (  t )  of undisturbed segments. This 
quantity is given by: 

where n is the number of walkers, N is the number 
of lattice points, and j ( r l ,  . . . , r , )  is the initial 
probability density function of walker positions. If: 

(randomly distributed walkers a t  the start of the 
process) , n and N are large and 

n 
N '  

c = -  

Equation (25)  then yields: 

p ( t )  = exp[ -c L J ( t . 1  dt ' ]  (28) 

where the flux of walkers J( t )  is given by: 

The relaxation modulus, G ( t ) ,  should be propor- 
tional to the rate of change of the survival probability 
P (  t )  of the undisturbed segments. Writing: 

- d p (  t )  G ( t )  = -k - - 
dt ' 

one observes that: 

G ( t )  = ckJ( t )exp  -c J ( t ' )  dt' (31)  IS,' I 
and 

k = constant 

Shlesinger and Montroll' showed that for a 
jumping time distribution function +( t ) proportional 
to / j - ( 1 + 8 )  /I?( 1 - 0) , as in eq. (A.18), the asymptotic 
form for J( t )  is given by: 

B3tB-l / r( p )  - cubic lattice 
J ( t )  = (33)  
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Equation ( 31 ) then yields: 

where 

one computes via eq. (34), the following expressions 
for the components of v*( =T/ - iq"): 

~ ' ( 0 )  = vo[ 1 - w e-(t/x)8sin w t  dt  (40) 1 (34) 
G ( t )  = - k p  (-) t o - l e - ( t / X ) B  

x x  

The memory function 

m ( t )  = - d G / d t  (36) 

associated with G ,  given by eq. (34) has the form: 

This type of expressions for 9' and 7" can be ap- 
proximated by the following equation for q*, 

Predictions of eqs. ( 40 ) - (42 ) successfully compare 
with experimental data, for polymer melts, and even 
for polymer solutions." Figures 5 and 6 illustrate 
such a comparison in the case of polyethylene oxide 
solutions. The figures illustrate surprisingly good 
agreement for both 9' and 4''. It is possible to obtain 
an analytic form for the corresponding linear vis- 
coelastic constitutive equation via eq. ( 42 ) . Using 
the Fourier transform 

( 3 7 )  ( p  - 1)  - t o -  k p  8-2 - ( t / X ) B  n(t)  = -at e x 
Note that for p = 4 , eq. (37 ) reduces to w ~ ~ ~ ~ ~ ' ~  
memory function.s Stastna et al.'O simulated various 
material functions using the quantities defined by 
eqs. (34) or (37 ) .  For example, the relaxation mod- 
ulus G ( t ) is related to the complex viscosity function 
q*( w )  via the Fourier transform ( F )  

G ( t )  = F - ' [ q * ( w ) ] .  

Introducing the zero shear rate viscosity 
where U (  t )  is the unit step function, and the general 
form of the linear viscoelastic constitutive equation To = w u p )  (39) 

[ MPo - S ]  

Figure 5 Model predictions of 7' and 7" data on a 0.5% polyethylene oxide (PEO) WSR 
301 (Union Carbide) solution. The parameters are: (-) eqs. (40) ,  (41 ) : qo = 110 MPa - s; 
p = 0.44; X = 0.1 s .  
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Figure 6 Model predictions of q' and 9'' data on a 1% PEO WSR 205, (Union Carbide) 
solution. The parameters are: ( -) eqs. (40), (41 ) : qo = 19.64 MPa - s; B = 0.33; X = 0.002 s. 

a, 

G ( s ) + ( t  - S )  ds (44)  

where z is the extra-stress tensor and 
of deformation tensor, one obtains 

is the rate 

This constitutive equation approximates the equa- 
tion corresponding to the relaxation modulus of eq. 
( 34) : the stretched exponential relaxation. 

CONCLUSIONS 

In the study of nonclassical effects of diffusion in 
polymers by the method of continuous time random 
walk, we observe that non-Markovian processes, 
characterized by the jumping-time distribution 
function +, can lead to various nonstandard forms 
of diffusion characteristics. For a small dispersion 
in jumping times, the process becomes Gaussian with 
increasing time. On the other hand, for + ( t )  
x t-('+B), t 2 7, the transport process is non-Gauss- 
ian. If the penetrating molecules are such that they 
generate various local conformational abnormalities 
in the system of polymer chains, nonclassical trans- 
port might generate stretched exponential relaxation 
in the polymer. There are known rheological models 
of this type that describe linear viscoelastic behavior 
of melts and of solutions. 

The stretched exponential relaxation was in fact 
proposed by Kohlrausch in 1863." Recently, many 
such relaxation phenomena in disordered systems 
(dielectric, magnetic, thermal, optical) have been 
found. The universality of this stretched exponential 
law is most striking. It seems that atomic or molec- 
ular structure is not essential; spatial and energetic 
disorder is. 

APPENDIX A: ASYMPTOTIC BEHAVIOR 

By taking the Laplace transform of eq. (5) and using 
the continuum limit, one obtains the following 
equation for 6: [GI = G*: 

uG*( X ,  U )  - G ( x ,  0) 

= @ * ( u ) [ a G & ( ~ ,  u) + bG:(x ,  u)]. (A.1) 

With 

defining 

and 

A = a@*, 

B = b@* 
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we obtain the following nonhomogeneous differen- 
tial equation for G*( x ,  u )  where u is fixed. 

The solution of the homogeneous equation can be 
written as 

where 

b 
2a (-4.7) 

and 

where c1 ( u )  and c2( u )  are arbitrary functions of the 
Laplace transform parameter u. We choose the par- 
ticular solution of eq. (A.5) together with the fol- 
lowing conditions: 

G*( 0, u )  = 0 ( A.9 ) 

G: (0 ,  u )  = 0 (A.lO) 

as a solution of the free space problem. 
Via the space Laplace transform [ c*( s )  = 6, (G* ) 1,  
we find 

1 1 
B2 1 / 2  2 * 

A [ - ( - &) - [ (: + z) ] 
( A . l l )  

Inverting eq. ( A . l l )  and using solution (A.6) ,  one 
obtains: 

b 
G * ( x ,  u )  = cl(u)exp [ - - 2a + (2 ++)'"I. 

+ c2(u)exp[ - b - (2 + +-'2]x 
2 

X 

It is now possible [see eqs. ( 4 )  and ( 6 )  ] to express 
the generating function d ( x ,  J/*), using G * ( x ,  u )  
and the continuum limit, as follows. 
First 

-= $* ** (A.13) 
u + 4* 

and 

u 1 - * *  
$* ** 
_ -  -- (A.14) 

Then 

1 - ** 

Also 

1 - ** 
d ( 0 ,  $*) = c l ( u )  + c 2 ( u )  (A.16) 

U 

A compIete analytic study is possible only if the 
functions cl(  u )  and c2( u )  are known. Such infor- 
mation can be obtained via detailed experimental 
work. It is however possible to study the impact of 
various models of ci ( u ) .  To study the asymptotic 
behavior, we use the modelling potential of the 
jumping time distribution function $( t )  . Assume 
now that +( t )  has an inverse power tail for long 
times, that is, its Laplace transform can be approx- 
imated as follows: 
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* * ( u )  - 1 - cup (A.18) 

for u + 0 and p > 0. 
We can write: 

b C  
2a b 

sinh - x + - X 

. (A.19) 
b 2  C 

~ u 2  + - u8+2 
4a a 

X 

Assuming that: 

lim c l ( u )  = lim c 2 ( u )  (A.20) 
u+o U+O 

and that 

q ( u )  + c z ( u )  - I W k ,  (A.21) 

for u --* co and k E (0, 1). 
Such a choice guarantees that the probability G( 0, 

t )  decreases to  0 with time. Using our assumptions, 
we can write the following asymptotic expression: 

f = h - x ,  (A.23) 

a n d O < k <  l ; O < p <  1; 1 < p +  k < 2 .  
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